PER1 phosphorylation specifies feeding rhythm in mice.
نویسندگان
چکیده
Organization of circadian behavior, physiology, and metabolism is important for human health. An S662G mutation in hPER2 has been linked to familial advanced sleep-phase syndrome (FASPS). Although the paralogous phosphorylation site S714 in PER1 is conserved in mice, its specific function in circadian organization remains unknown. Here, we find that the PER1S714G mutation accelerates the molecular feedback loop. Furthermore, hPER1S714G mice, but not hPER2S662G mice, exhibit peak time of food intake that is several hours before daily energy expenditure peaks. Both the advanced feeding behavior and the accelerated clock disrupt the phase of expression of several key metabolic regulators in the liver and adipose tissue. Consequently, hPER1S714G mice rapidly develop obesity on a high-fat diet. Our studies demonstrate that PER1 and PER2 are linked to different downstream pathways and that PER1 maintains coherence between the circadian clock and energy metabolism.
منابع مشابه
In Vivo Monitoring of Multi-Unit Neural Activity in the Suprachiasmatic Nucleus Reveals Robust Circadian Rhythms in Period1−/− Mice
The master pacemaker in the suprachiasmatic nucleus (SCN) controls daily rhythms of behavior in mammals. C57BL/6J mice lacking Period1 (Per1⁻/⁻) are an anomaly because their SCN molecular rhythm is weak or absent in vitro even though their locomotor activity rhythm is robust. To resolve the contradiction between the in vitro and in vivo circadian phenotypes of Per1⁻/⁻ mice, we measured the mult...
متن کاملCircadian behavior of mice deficient in PER1/PML or PER2/PML
BACKGROUND Our recent studies demonstrate that the murine homolog of the human tumor suppressor promyelocytic leukemia (PML) regulates circadian behavior of mice. To further gather insight into PML's contribution to circadian behavior, we generated two strains of mice deficient in one of the two period (Per) genes and the PML gene, with Per1-/-/Pml-/- and Per2-/-/Pml-/- genotypes. RESULTS Her...
متن کاملEGR1 regulates hepatic clock gene amplitude by activating Per1 transcription
The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an ear...
متن کاملFeeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
The suprachiasmatic nuclei (SCN) of the hypothalamus contain the master mammalian circadian clock, which is mainly reset by light. Temporal restricted feeding, a potent synchronizer of peripheral oscillators, has only weak influence on light-entrained rhythms via the SCN, unless restricted feeding is coupled with calorie restriction, thereby altering phase angle of photic synchronization. Effec...
متن کاملEndogenous rhythms in Period1 mutant suprachiasmatic nuclei in vitro do not represent circadian behavior.
The mammalian circadian pacemaker in the suprachiasmatic nuclei (SCN) controls daily rhythms of behavior and physiology. Lesions of the SCN cause arrhythmicity of locomotor activity, and transplants of fetal SCN tissue restore rhythmic behavior that is consistent with the periodicity of the donor's genotype, suggesting that the SCN determines the period of the circadian behavioral rhythm. While...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2014